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Bayesian Network Structure Learning

Learning a BN B = (G,Θ) from a data set D is performed in two steps:

P(B | D) = P(G,Θ | D)︸ ︷︷ ︸
learning

= P(G | D)︸ ︷︷ ︸
structure learning

· P(Θ | G,D)︸ ︷︷ ︸
parameter learning

.

In a Bayesian setting structure learning consists in finding the DAG with the
best P(G | D) (BIC [6] is a common alternative) with some heuristic search
algorithm. We can decompose P(G | D) into

P(G | D) ∝ P(G) P(D | G) = P(G)

∫
P(D | G,Θ) P(Θ | G) dΘ

where P(G) is the prior distribution over the space of the DAGs and P(D | G)
is the marginal likelihood of the data given G averaged over all possible
parameter sets Θ; and then

P(D | G) =
N∏
i=1

[∫
P(Xi | ΠXi ,ΘXi) P(ΘXi | ΠXi) dΘXi

]
where ΠXi are the parents of Xi in G.
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The Bayesian Dirichlet Marginal Likelihood

If D contains no missing values and assuming:

� a Dirichlet conjugate prior (Xi | ΠXi
∼ Mult(ΘXi

| ΠXi
) and

ΘXi | ΠXi ∼ Dir(αijk),
∑

jk αijk = αi the imaginary sample size);

� positivity (all conditional probabilities πijk > 0);

� parameter independence (πijk for different parent configurations are
independent) and modularity (πijk in different nodes are independent);

Heckerman et al. [4] derived a closed form expression for P(D | G):

BD(G,D;α) =

N∏
i=1

BD(Xi,ΠXi
;αi) =

=

N∏
i=1

qi∏
j=1

[
Γ(αij)

Γ(αij + nij)

ri∏
k=1

Γ(αijk + nijk)

Γ(αijk)

]

where ri is the number of states of Xi; qi is the number of configurations of
ΠXi ; nij =

∑
k nijk; and αij =

∑
k αijk.
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Bayesian Dirichlet Equivalent Uniform (BDeu)

The most common implementation of BD assumes αijk = α/(riqi),
α = αi and is known from [4] as the Bayesian Dirichlet equivalent
uniform (BDeu) marginal likelihood. However, there is evidence that
assuming a flat prior over the parameters can be problematic:

� The prior is actually not uninformative [5].

� MAP DAGs selected using BDeu are highly sensitive to the choice
of α and can have markedly different number of arcs even for
reasonable α [8].

� In the limits α→ 0 and α→∞ it is possible to obtain both very
simple and very complex DAGs, and model comparison may be
inconsistent for small D and small α [8, 10].

� The sparseness of the MAP network is determined by a complex
interaction between α and D [10, 12].

� There are formal proofs of all this in [11, 12].
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Exhibits A and B
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Exhibit A

The sample frequencies (nijk) for X | ΠX are:

Z,W 0, 0 1, 0 0, 1 1, 1

X
0 2 1 1 2
1 1 2 2 1

and those for X | ΠX ∪ Y are as follows.

Z,W, Y 0, 0, 0 1, 0, 0 0, 1, 0 1, 1, 0 0, 0, 1 1, 0, 1 0, 1, 1 1, 1, 1

X
0 2 1 1 0 0 0 0 2
1 1 2 2 0 0 0 0 1

Even though X | ΠX and X | ΠX ∪ Y have the same empirical entropy,

H(X | ΠX) = H(X | ΠX ∪ Y ) = 4

[
−1

3
log

1

3
− 2

3
log

2

3

]
= 2.546 ...
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Exhibit A

... G− has a higher entropy than G+ a posteriori ...

H(X | ΠX ;α) = 4

[
−1 + 1/8

3 + 1/4
log

1 + 1/8

3 + 1/4
− 2 + 1/8

3 + 1/4
log

2 + 1/8

3 + 1/4

]
= 2.580,

H(X | ΠX ∪ Y ;α) = 4

[
−1 + 1/16

3 + 1/8
log

1 + 1/16

3 + 1/8
− 2 + 1/16

3 + 1/8
log

2 + 1/16

3 + 1/8

]
= 2.564

... and BDeu with α = 1 chooses accordingly, and things fortunately work out:

BDeu(X | ΠX) =

(
Γ(1/4)

Γ(1/4 + 3)

[
Γ(1/8 + 2)

Γ(1/8)
· Γ(1/8 + 1)

Γ(1/8)

])4

= 3.906× 10−7,

BDeu(X | ΠX ∪ Y ) =

(
Γ(1/8)

Γ(1/8 + 3)

[
Γ(1/16 + 2)

Γ(1/16)
· Γ(1/16 + 1)

Γ(1/16)

])4

= 3.721× 10−8.
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Exhibit B

The sample frequencies for X | ΠX are:

Z,W 0, 0 1, 0 0, 1 1, 1

X
0 3 0 0 3
1 0 3 3 0

and those for X | ΠX ∪ Y are as follows.

Z,W, Y 0, 0, 0 1, 0, 0 0, 1, 0 1, 1, 0 0, 0, 1 1, 0, 1 0, 1, 1 1, 1, 1

X
0 3 0 0 0 0 0 0 3
1 0 3 3 0 0 0 0 0

The empirical entropy of X is equal to zero for both G+ and G−, since
the value of X is completely determined by the configurations of its
parents in both cases.
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Exhibit B

Again, the posterior entropies for G+ and G− differ:

H(X | ΠX ;α) = 4

[
−0 + 1/8

3 + 1/4
log

0 + 1/8

3 + 1/4
− 3 + 1/8

3 + 1/4
log

3 + 1/8

3 + 1/4

]
= 0.652,

H(X | ΠX ∪ Y ;α) = 4

[
−0 + 1/16

3 + 1/8
log

0 + 1/16

3 + 1/8
− 3 + 1/16

3 + 1/8
log

3 + 1/16

3 + 1/8

]
= 0.392.

However, BDeu with α = 1 yields

BDeu(X | ΠX) =

(
Γ(1/4)

Γ(1/4 + 3)

[
Γ(1/8 + 3)

Γ(1/8)
·
�
�
�Γ(1/8)

Γ(1/8)

])4

= 0.032,

BDeu(X | ΠX ∪ Y ) =

(
Γ(1/8)

Γ(1/8 + 3)

[
Γ(1/16 + 3)

Γ(1/16)
·
�
�

��Γ(1/16)

Γ(1/16)

])4

= 0.044,

preferring G+ over G− even though the additional arc Y → X does not provide
any additional information on the distribution of X, and even though 4 out of
8 conditional distributions in X | ΠX ∪ Y are not observed at all in the data.
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Better Than BDeu: Bayesian Dirichlet Sparse (BDs)

If the positivity assumption is violated or the sample size n is small, there may
be configurations of some ΠXi

that are not observed in D. And then

BDeu(Xi,ΠXi
;α) =∏

j:nij=0

[
���������Γ(αij)

Γ(αij)

ri∏
k=1

Γ(αijk)

Γ(αijk)

] ∏
j:nij>0

[
Γ(αij)

Γ(αij + nij)

ri∏
k=1

Γ(αijk + nijk)

Γ(αijk)

]
,

so the effective imaginary sample size decreases as the number of unobserved
parents configurations increases. We can prevent that by replacing αijk with

α̃ijk =

{
α/(riq̃i) if nij > 0

0 otherwise
, q̃i = {number of ΠXi such that nij > 0}

and plugging it in BD instead of αijk = α/(riqi) to obtain BDs.

Then BDs(Xi,ΠXi
;α) = BDeu(Xi,ΠXi

;αqi/q̃i).
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BDeu and BDs Compared

Cells that correspond to (Xi,ΠXi) combinations that are not observed
in the data are in red, observed combinations are in green.
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Exhibits A and B, Once More

BDs does not suffer from the bias arising from q̃i < qi and it assigns the same
score to G− and G+ in both examples,

Exhibit A: BDs(X | ΠX) = BDs(X | ΠX ∪ Y ) = 3.9× 10−7,

Exhibit B: BDs(X | ΠX) = BDs(X | ΠX ∪ Y ) = 0.032.

It also avoids giving wildly different Bayes factors depending on the value of α.
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This Left Me with a Few Questions...

The obvious one being:

1. The behaviour of BDeu is certainly undesirable, but it is it wrong?

Followed by:

2. Posterior entropy and BDeu rank G− and G+ in the same order for
Exhibit A, but they do not for Exhibit B. Why is that?

And the reason why I found that surprising is that:

3. Maximum (relative) entropy [7, 9, 1] represents a very general
approach that includes Bayesian posterior estimation as a particular
case [3]; it can also be seen as a particular case of MDL [2].

Hence, unless something is wrong with BDeu I would expect the two to
agree. Especially because we can use MDL (using BIC), MAP (using
BDeu/BDs),
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Bayesian Statistics and Information Theory (I)

The derivation of Bayesian posterior as a particular case of maximum
(relative) entropy is made clear in Giffin and Caticha [3]. The selected
joint posterior P(X,Θ) is that which maximises the relative entropy

S(P,Pold) = −
∫

P(X,Θ) log
P(X,Θ)

Pold(X,Θ)
dX dΘ.

The family of posteriors that reflects the fact that X is now known to
take value x′ is such that

P(X) =

∫
P(X = x′,Θ) dΘ = δ(X − x′)

which amounts to a (possibly infinite) number of constraints on
P(X,Θ): for each possible value of X there is one constraint.
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Bayesian Statistics and Information Theory (II)

Maximising S(P,Pold) subject to those constraints using Lagrange
multipliers means solving

S(P,Pold) + λ0

[∫
P dX dΘ− 1

]
︸ ︷︷ ︸
normalising constraint

+

∫
λ(x)

[∫
P(X,Θ)− δ(X − x′) dΘ

]
︸ ︷︷ ︸

constraint for each value of X

dX

and yields the familiar Bayesian update rule:

Pnew(X,Θ) =
Pold(X,Θ)δ(X − x′)

Pold(X)
= Pold(Θ | X)δ(X − x′).
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Bayesian Statistics and Information Theory (III)

In particular, the updated distribution for Θ is

Pnew(Θ) =

∫
Pnew(X,Θ) dX = Pold(Θ | X = x′)

which means that the posterior distribution is that in which we only
update those aspects of our beliefs for which corrective new evidence (in
this case, the data) has been supplied. However, we use all the available
information (as opposed to just what is in the empirical entropy):

� the information encoded in the distributional assumptions for the
prior distribution over Θ;

� the information encoded in the distributional assumptions for the
random variable X;

� the information encoded in the observed data.
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Back to BNs: the Posterior Expected Entropy

Starting from the Markov property, for a BN we can write

HG(X; Θ) =

N∑
i=1

HG(Xi; ΘXi).

where HG(Xi; ΘXi) is the entropy of Xi given its parents ΠXi in G.

The marginal posterior expectation of HG(Xi; ΘXi) with respect to ΘXi

given the data can then be expressed as

E
(
HG(Xi) | D

)
=

∫
HG(Xi; ΘXi) P(ΘXi | D) dΘXi

where we use D to refer specifically to the observed values for Xi and
ΠGXi

with a slight abuse of notation.
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Adding the Dirichlet Prior

We can then introduce a Dirichlet(αijk) prior over ΘXi with

P(ΘXi | D) =

∫
P(ΘXi | D, αijk) P(αijk | D) dαijk,

which leads to

E
(
HG(Xi) | D

)
=

∫∫
HG(Xi; ΘXi) P(ΘXi | D, αijk) P(αijk | D) dαijk dΘXi

∝
∫

E
(
HG(Xi) | D, αijk

)
P(D | αijk) P(αijk) dαijk,

where P(αijk) is a hyper-prior distribution over the space of the
Dirichlet priors, identified by their parameter sets {αijk}.
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Components of the Posterior Expected Entropy

E
(
HG(Xi) | D, αijk

)
is the posterior expected value of the entropy of

Xi | ΠXi given αijk, and has closed form

E
(
HG(Xi) | D, αijk

)
=

qi∑
j=1

[
ψ0(αij + nij + 1)−

ri∑
k=1

αijk + nijk
αij + nij

ψ0(αijk + nijk + 1)

]
.

P(D | αijk) follows a Dirichlet-multinomial distribution, so

P(D | αijk) =

 qi∏
j=1

nij !∏ri
k=1 niijk!

 ·
 qi∏
j=1

Γ(αij)

Γ(nij + αij)

ri∏
k=1

Γ(nijk + αijk)

Γ(αijk)

 ∝ BD(Xi | ΠGXi
;αijk)

making the link between BD scores and entropy explicit.
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BDeu and the Maximum Entropy Principle

In the case of BDeu, P (αijk = α/(riqi)) = 1 and learning DAGs based
on sparse data following the maximum (relative) entropy means

E
(

HG
−

(Xi) | D, αijk

)
BDeu

(
Xi | ΠG

−

Xi
;αijk

)
6

E
(

HG
+

(Xi) | D, αijk

)
BDeu

(
Xi | ΠG

+

Xi
;αijk(q̃i/qi)

)
whereas it should be

E
(

HG
−

(Xi) | D, αijk

)
BDeu

(
Xi | ΠG

−

Xi
;αijk

)
6

E
(

HG
+

(Xi) | D, αijk

)
BDeu

(
Xi | ΠG

+

Xi
;αijk

)
so structure learning with BDeu may deviate from the maximum
(relative) entropy principle when computed from sparse data. BDs does
not.
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Exhibit A, One Last Time
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Exhibit B, One Last Time

Combining BDeu with E
(
HG(Xi) | D, αijk

)
gives

E
(

HG
−

(X) | D
)

= 0.3931 · 0.0326 = 0.0128 <

0.0252 = 0.5707 · 0.0441 = E
(

HG
+

(X) | D
)

while BDs gives

E
(

HG
−

(X) | D
)

= 0.3931 · 0.0326 = 0.0128 =

0.0128 = 0.3931 · 0.0326 = E
(

HG
+

(X) | D
)
.
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Summary and Conclusions

� BDeu can be problematic for small/large values of the imaginary
sample size; we found that BDeu can also be problematic regardless if
the data are sparse.

� Then we proposed BDs as a minimalistic fix which prevents the
imaginary sample size from partially vanishing when there are
unobserved parent configurations.

� But is BDeu just from not working very well, or is it methodologically
wrong to use it with sparse data? (Many statistical methods that are
methodologically correct but do not work very well on sparse data.)

� One way of looking at this problem is in the context or maximum
(relative) entropy. Given the same information in the prior, and the
same information from the data, the assumptions behind BDeu can
give a rank more complex, singular BNs over simpler ones.

Marco Scutari University of Oxford



References I

A. Caticha.
Relative entropy and inductive inference.
In Bayesian Inference and Maximum Entropy Methods in Science and Engineering,
pages 75–96, 2004.

M. Feder.
Maximum Entropy as a Special Case of the Minimum Description Length Criterion.
IEEE Transactions on Information Theory, 32(6):847–849, 1986.

A. Giffin and A. Caticha.
Updating Probabilities with Data and Moments.
In Proceedings of the 27th International Workshop on Bayesian Inference and
Maximum Entropy Methods in Science and Engineering, pages 74–84, 2007.

D. Heckerman, D. Geiger, and D. M. Chickering.
Learning Bayesian Networks: The Combination of Knowledge and Statistical Data.
Machine Learning, 20(3):197–243, 1995.
Available as Technical Report MSR-TR-94-09.

I. Nemenman, F. Shafee, and W. Bialek.
Entropy and Inference, Revisited.
In Proceedings of the 14th Advances in Neural Information Processing Systems (NIPS)
Conference, pages 471–478, 2002.

Marco Scutari University of Oxford



References II

G. Schwarz.
Estimating the Dimension of a Model.
The Annals of Statistics, 6(2):461–464, 1978.

J. E. Shore and R. W. Johnson.
Axiomatic Derivation of the Principle of Maximum Entropy and the Principle of
Minimum Cross-Entropy.
IEEE Transactions on Information Theory, IT-26(1):26–37, 1980.

T. Silander, P. Kontkanen, and P. Myllymäki.
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